(40(2+h)-16(2+h)^2-16)/h

Simple and best practice solution for (40(2+h)-16(2+h)^2-16)/h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (40(2+h)-16(2+h)^2-16)/h equation:


D( h )

h = 0

h = 0

h = 0

h in (-oo:0) U (0:+oo)

(40*(h+2)-(16*(h+2)^2)-16)/h = 0

(40*(h+2)-16*(h+2)^2-16)/h = 0

40*(h+2)-16*(h+2)^2-16 = 0

40*(h+2)-16*(h+2)^2-16 = 0

16-16*h^2-24*h-16 = 0

-16*h^2-24*h = 0

-16*h^2-24*h = 0

-8*h*(2*h+3) = 0

2*h+3 = 0 // - 3

2*h = -3 // : 2

h = -3/2

-8*h*(h+3/2) = 0

-8*h*(h+3/2) = 0

(-8*h*(h+3/2))/h = 0

( -8*h )

-8*h = 0 // : -8

h = 0

( h+3/2 )

h+3/2 = 0 // - 3/2

h = -3/2

h in { 0}

h = -3/2

See similar equations:

| 177-4x=41x+22 | | 0-5(-3)=3 | | 3=0.5q | | TR=6q-0.5q^2 | | 10+10+10+10=110 | | x-5(-3)=3 | | ln(x)-ln(9)=11 | | 16x+40= | | X=-6/7y | | z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z=1 | | z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z*z=5555 | | z*z=66x | | z*z=5555 | | z*z=xy | | 5e=10x | | 5y=7z | | 2x=5y-8z | | 0.42x+x=71 | | 2x=974512 | | 12x-4y+8x= | | 0.1x^2-0.2x-3.5=0 | | 100x^3=x | | 4g^2-2g^2+2g-3g+7= | | 20=x-0.2x | | 4/3-2 | | 3ax-3y^2=0 | | 3x+3=168 | | 12/2/5 | | 24-1/3n=14 | | 1/5n+3=8 | | 12t^3+12t^2-84t-180=0 | | 11n+20=31 |

Equations solver categories